Roll No.

41258

B. Sc. (Hons.) Maths 4th Semester Examination – May, 2019

PHYSICS-IV

Paper: BHM246 Opt - ii

Time: Three hours]

[Maximum Marks : 60

Before answering the questions candidates should ensure that they have been supplied the correct and complete question paper. No complaint whis regard, will be entertained after examination.

Note: Attempt five questions in all, selecting at least one question from each Unit. Question No. 1 is compulsory.

- 1. (a) Write the purpose of Do statement.
 - (b) Two dice are thrown simultaneously. What will be probability that either a number 2 or 4 on the upper faces of dice.
 - (c) Define static and dynamic system.

41258

- (d) Compare the photoelectric effect and compton effect.
- (c) If an electron has a wavelength, does its also have a colour. $2 \times 5 = 10$

UNIT ~!

- 2. (a) What is a flow chart? Write the rules of drawing flow chart. Give the advantage of flow chart.6
 - (b) Distinguish between executable and nonexecutable statements.
- 3. (a) Explain GOTO statement along with its types. 6
 - (b) Write a subprogram to calculate the area of a triangles.

UNIT - II

- (a) Derive Boltzmann distribution law and derive expression for values of A and B.
 - (b) Find the probability that in tossing a coin 12 times, we get (i) 3 heads 9 tails (ii) 6 heads 6 tails.

- (a) Derive Planck's law of radiation using B- E distribution.
 - (b) Define macrostate and microstate with examples.

UNIT - III

- 6. (a) What do you understand by wave particle dualism?

 Describe Davisson and Germer's experiment to illustrate the wave nature of matter.
 - (b) An electron has a speed 1.05 x 10⁴ m/s within the accuracy of 0.02%. Calculate the uncertainty in the position of the electron.
- 7. (a) Define group velocity, phase velocity and particle velocity. Derive a relation between group velocity and particle velocity for a relativistic particle.
 - (b) The work function of a metal is 3.5eV. Calculate, what should be the maximum wave length of a photon that can eject photo- electrons from the metal.

- (a) Derive the time dependent Schrödinger wave equation.
- (b) Write two limitations of old quantum theory. 2

(4)